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We study the thermodynamics and the collapse of a self-gravitating gas of Brownian particles. We consider
a high-friction limit in order to simplify the problem. This results in the Smoluchowski-Poisson system. Below
a critical energy or below a critical temperature, there is no equilibrium state and the system develops a
self-similar collapse leading to a finite time singularity. In the microcanonical ensemble, this corresponds to a
‘‘gravothermal catastrophe’’ and in the canonical ensemble to an ‘‘isothermal collapse.’’ Self-similar solutions
are investigated analytically and numerically.
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I. INTRODUCTION

The thermodynamics of self-gravitating systems displ
intriguing features due to the existence of negative spec
heats, inequivalence of statistical ensembles, and phase
sitions associated with gravitational collapse@1#. Thermody-
namical equilibrium of a self-gravitating system enclos
within a box exists only above a critical energyEc5
20.335GM2/R or above a critical temperatureTc
5GMm/2.52kR and is at most a metastable state, i.e.
local maximum of a relevant thermodynamical potential~the
entropy in the microcanonical ensemble and the free ene
in the canonical ensemble! @2,3#. For T,Tc or E,Ec , the
system is expected to collapse. This is called the ‘‘gravoth
mal catastrophe’’ or ‘‘Antonov instability’’ in the microca
nonical ensemble~MCE! and ‘‘isothermal collapse’’ in the
canonical ensemble~CE!. Dynamical models appropriate fo
star formation@4# or globular clusters@5–8# show that the
collapse is self-similar and leads to a finite time singular
~i.e., the central density becomes infinite in a finite tim!.
The value of the scaling exponent in the density profiler
;r 2a depends on whether the system evolves at fixed t
perature ~in which casea52 results from dimensiona
analysis! or if its temperature is free to diverge~in which
case the value of the exponent is nontrivial and often clos
2.2). It is found, in general, that the shrinking of the core
so rapid that the core mass goes to zero at the collapse
although the central density is infinite.

In this paper, we introduce a simple model of gravitation
dynamics, which exhibits similar features and which can
studied in great detail. Specifically, we consider a gas
self-gravitating Brownian particles enclosed within a sphe
cal box. For simplicity, we take a high-friction limit an
reduce the problem to the study of the Smoluchows
Poisson system. In the simplest formulation, the tempera
is constant~canonical description!. We also consider the cas
of an isolated medium with an infinitely large thermal co
ductivity so that its temperature is uniform in space but v
ies with time in order to conserve energy~microcanonical
description!. The interest of these models is their relati
simplicity that allows for a complete theoretical analys
while keeping all the richness of the thermodynamical pr
1063-651X/2002/66~3!/036105~19!/$20.00 66 0361
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lem: the inequivalence of statistical ensembles, phase tra
tions, gravitational collapse, finite time singularity, pers
tence of metastable states, basin of attraction, etc. Th
models are consistent with the first and second principle
thermodynamics and give a dynamical picture of what h
pens when no equilibrium state exists. However, in view
their considerable simplification, it is not clear whether the
models can have astrophysical applications although con
tions with the dynamics of dust particles in the solar neb
and the process of ‘‘violent relaxation’’ in collisionless stell
systems are mentioned.

The paper is organized as follows. In Sec. II A, we intr
duce the Smoluchowski-Poisson~SP! system for a gas of
self-gravitating Brownian particles and list its main prope
ties. In particular, we make contact with thermodynam
and show that the SP system satisfies a form ofH theorem. In
Sec. II B, we discuss the existence of stationary solutions
the SP system and the relation with maximum entropy sta
In Sec. II C, we perform a linear stability analysis of the S
system. We show that a stationary solution is linearly sta
if and only if it is a local entropy maximum and that th
eigenvalue problem for linear stability is connected to t
eigenvalue problem for the second-order variations of
tropy studied in Refs.@9,10#. In Sec. III, we consider the cas
of gravitational collapse and exhibit self-similar solutions
the SP system. Since the particles are confined within a b
there is a small deviation to the purely self-similar regim
and we describe this correction in detail.

In Sec. IV, we perform various numerical simulations
the SP system for different initial conditions. We check t
results of thermodynamics, namely, the existence of equ
rium states forE.Ec and T.Tc and the gravitational col-
lapse otherwise. We find that the collapse proceeds s
similarly with an explosion, in a finite timetcoll , of the
central density while the core radius shrinks to zero. In MC
this is accompanied by a divergence of temperature and
tropy. In the limit t→tcoll , we find the scaling lawsr0r 0

a

;1 andr/r0;(r /r 0)2a. The scaling exponent isa52 in
CE anda.2.21 in MCE. In CE, the invariant profiler/r0
5 f (r /r 0) can be determined analytically. The collapse tim
diverges like tcoll;(Ec2E)21/2 and tcoll;(Tc2T)21/2 as
we approach the critical energyEc and critical temperature
©2002 The American Physical Society05-1
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Tc . We also study the linear development of the instabi
~for unstable isothermal spheres! and show that the densit
perturbationdr/r presents several oscillations depending
the value of the density contrast. In particular, at the points
marginal stability in the series of equilibria, the perturbati
dr/r has a ‘‘core-halo’’ structure in the microcanonical e
semble but not in the canonical ensemble, in agreement
the theory@9,10#.

II. SELF-GRAVITATING BROWNIAN PARTICLES

A. The Smoluchowski-Poisson system

We consider a system of small particles with massm im-
mersed in a fluid. We assume that the fluid imposes to
particles a friction force2jv and a stochastic forceR(t).
This random force may mimic ordinary Brownian motio
~i.e., the collisions of the fluid particles onto the solid pa
ticles! or fluid turbulence. We assume, in addition, that t
particles interact gravitationally with each other. Therefo
the stochastic Langevin equation describing the motion o
particle reads

dv

dt
52jv1F~r ,t !1R~ t !, ~1!

whereF52“F is the gravitational force acting on the pa
ticle. For simplicity, we shall assume that the stochastic fo
is d-function correlated in time and set

^R~ t !•R~ t8!&56Dd~ t2t8!, ~2!

whereD measures the noise strength of the Langevin for
In order to recover the Maxwell-Boltzmann distribution

f 5
1

~2pT!3/2
re2v2/2T with r5Ae2bF, ~3!

at equilibrium, the diffusion coefficient and the friction ter
must be related according to the Einstein relationD5jT.
Applying standard methods@11#, we can immediately write
down the Fokker-Planck equation associated with this
chastic process,

] f

]t
1v

] f

]r
1F

] f

]v
5

]

]v H DS ] f

]v
1b f vD J . ~4!

This is the familiar Kramers equation but, when self-grav
is taken into account, it must be coupled to the Poisson eq
tion

DF54pGr, ~5!

whereG is the gravitational constant. This makes its stu
much more complicated than usual. The Kramers-Pois
~KP! system was first introduced in astrophysics by Ch
drasekhar@12# in his stochastic theory of stellar dynamic
~for, e.g., globular clusters!. In that context, the diffusion and
the friction arise self-consistently as the result of the fluct
tions of the gravitational field and they model the effect
encounters between states. An equation of the form~4! was
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also proposed as aneffectivedynamics of collisionless stella
systems~on a coarse-grained scale! during the period of vio-
lent relaxation@13,14#.

In order to simplify the problem, we consider a hig
friction limit j→1`. Then, it is possible to neglect the in
ertial term in the Langevin equation~1!. The Fokker-Planck
equation describing this high-friction limit is the Smolu
chowski equation

]r

]t
5“H 1

j
~T“r1r“F!J ~6!

with a diffusion coefficientD85T/j and a drift term propor-
tional to the gravitational force. The ordinary Smoluchows
equation describes the sedimentation of colloidal susp
sions in an external gravitational field. Since it is a prototy
of kinetic equations, it is clearly of great interest to consid
the extension of this model to the case where the potenti
not fixed but is related to the density of the particles via
Poisson equation, as in the gravitational case.

The Smoluchowski equation can be interpreted equi
lently as a continuity equation for the densityr with a ve-
locity field

u52
1

j S T

r
“r1“F D , ~7!

where2T“r is the pressure force and2r“F is the gravi-
tational force. At equilibrium, the two terms balance ea
other and the Boltzmann distribution~3! establishes itself.
Physically, the high-friction limit supposes that there are t
time scales in the problem. On a short time scale, of the o
of the friction timej21!tdyn , the system thermalizes an
the distribution function becomes Maxwellian with temper
ture T @this is obvious if we take the limitD5jT→1` in
the right-hand side~rhs! of Eq. ~4!#. Then, on a longer time
scale, of the order of the dynamical timetdyn , the particle
distribution r(r ,t) tends to evolve towards a state of m
chanical equilibrium described by the Boltzmann distributi
~3!. Note that the opposite assumptions are made for glob
clusters@5–7#: the system is assumed to be in mechani
equilibrium and the evolution is due to thermal transfers
tween the core and the halo. Our model of self-gravitat
Brownian particles could find applications for the dynam
of dust particles in the solar nebula and the formation
planetesimals by gravitational instability~see, e.g., Ref.
@15#!. In that context, the dust particles experience a frict
with the gas modeled by Stokes or Epstein’s laws and
high friction limit may be relevant. On the other hand, t
diffusion of the particles could result from a stochastic co
ponent of the force or from fluid turbulence. This would b
just a small step because the physics of planetesimal for
tion is more involved than our simple model.

Since the system described previously is in contact wit
heat bath, the proper statistical treatment is thecanonical
ensemblein which the temperatureT is fixed. In order to test
dynamically the inequivalence of statistical ensembles
self-gravitating systems, we would like to introduce a simp
model corresponding to themicrocanonical ensemble, i.e.,
5-2
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with strict conservation of energyE. In fact, when a Brown-
ian particle moves with its terminal velocity in a gravit
tional field, the work of the force ought to be converted in
heat. If the medium acts as a thermostat with an infin
volume and with rapid dissipation of heat, we can disreg
the variation of temperature and we get the isothermal mo
discussed previously. However, if we are to keep track
local heating, the temperature will depend on space and
and we need to set up a model in which energy is conser
Such a generalization of the Brownian theory has rece
been developed by Streater@16# in the case of an externa
gravitational potential. Thisstatistical dynamicsapproach
@17# leads to coupled nonlinear equations for the den
r(r ,t) and the temperatureT(r ,t), which are consistent with
the first and second principles of thermodynamics. S
equations can be derived from a microscopic model invo
ing Brownian particles and heat particles modeled as qu
tum oscillators. A generalization of these equations for s
gravitating Brownian particles has been proposed by B
et al. @18#. It consists of the Smoluchowski-Poisson syste
~6! and ~5! coupled to a diffusion equation for the temper
ture

3

2

]

]t
~rT!5“•~l“T!2“•~TJ!2J•“F, ~8!

where J is the diffusion current in Eq.~6!. However, this
model still remains complicated for a first step. Since o
main purpose is to illustrate in the simplest way the ba
features of the thermodynamics of self-gravitating syste
~inequivalence of ensembles, gravothermal catastrophe,
thermal collapse, phase transitions, basin of attraction, e!,
we shall consider an additional approximation and let
thermal conductivityl in Eq. ~8! go to1`. In that case, the
temperature is uniform but still evolving with time accordin
to the law of energy conservation~first principle!,

E5
3

2
MT~ t !1

1

2E rFd3r . ~9!

The first term in the rhs is the kinetic energyK
5* f v2/2d3rd3v for a Maxwellian distribution function with
temperatureT and the second term is the gravitational ene
of interaction. Equations~6!, ~5!, ~9! lead to a simple micro-
canonical model for self-gravitating systems with a lot
attractive properties. The Cauchy problem for this system
equations was studied by Rosier@19#. These equations wer
first proposed by Chavaniset al. @20# as a simplified mode
of ‘‘violent relaxation’’ by which a stellar system, initially fa
from mechanical equilibrium, tries to reach an isotherm
state on a few dynamical times@13,21#. In that context, the
engine of the evolution is the competition between press
and gravity, as in Eq.~6!. This particular equation corre
sponds to an overdamped evolution but more general e
tions taking into account inertial terms are also proposed
Ref. @20#.

It is easy to show that the SP system admits a form oH
theorem for an appropriate thermodynamical potential~sec-
ond principle!. The microcanonical ensemble is charact
03610
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ized by the specification of massM and energyE. The ther-
modynamical potential is the entropy

S5
3

2
M1

3

2
M ln~2pT!2E r ln rd3r , ~10!

which is the form of the classical Boltzmann entropyS5
2* f ln fd3rd3v for a Maxwellian distribution function with
temperatureT. Then, it is easy to show, using Eqs.~6! and
~9!, that @20#

Ṡ5E 1

Trj
~T“r1r“F!2 d3r>0. ~11!

Therefore, the entropy plays the role of a Lyapunov funct
for our microcanonical model. The canonical ensemble
characterized by the specification of massM and temperature
T. It is straightforward to show that the SP system~6! satis-
fies a relation similar to Eq.~11! for the free energy~more
precisely the Massieu function! J5S2bE. It can be noted
that the Kramers equation~4! and the Smoluchowski equa
tion ~6! can also be derived from a variational formulatio
@20#, called the maximum entropy production princip
~MEPP!. This makes a direct relation between the dynam
and the thermodynamics. Since the SP system with the c
straint ~9! obeys the same conservation laws andH theorem
as more realistic models such as the Landau-Poisson sy
@8# and the coarse-grained Vlasov-Poisson system@14#, it
should exhibit qualitatively similar properties even if the d
tails of the evolution are expected to differ in many respec

In order to properly define our system of equations,
must specify the boundary conditions. We shall assume
the system is nonrotating and restrict ourselves to spheric
symmetric solutions. In addition, we shall work in a sphe
cal box of radiusR to avoid the well-known infinite mass
problem associated with isothermal configurations. In t
case, the boundary conditions are

]F

]r
~0!50, F~R!52

GM

R
, T

]r

]r
1r

GM

R2
50.

~12!

The first condition expresses the fact that the gravitatio
force at the center of a spherically symmetric system is ze
The second condition defines the gauge constant in the g
tational potential. Finally, the last condition ensures that
total mass is conserved~we have used the Gauss theore
] rF5GM/r 2 to simplify its expression!.

For spherically symmetric systems, it is possible to redu
the SP system to a single partial differential equation for
mass profileM (r ,t)54p*0

r rr 82dr8. Multiplying both sides
of Eq. ~6! by r 2 and integrating from 0 tor, we obtain, after
straightforward algebra,
5-3
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]M

]t
~r ,t !5

1

j H T
]2M

]r 2
~r ,t !2

2T

r

]M

]r
~r ,t !

1
GM~r ,t !

r 2

]M

]r
~r ,t !J . ~13!

The appropriate boundary conditions are nowM (0,t)50 and
M (R,t)5M . The potential energy can be expressed in ter
of M (r ,t) as @22#

W52E
0

RGM~r ,t !

r

]M

]r
~r ,t !dr. ~14!

It is possible to simplify Eq.~13! a little more by introducing
the new coordinateu5r 3 so that

j
]M

]t
~u,t !59Tu4/3

]2M

]u2
~u,t !13GM~u,t !

]M

]u
~u,t !.

~15!

Finally, we note that the KP system satisfies a form of
virial theorem,

1

2

d2I

dt2
1

1

2
j

dI

dt
52K1W23pbV, ~16!

whereI 5*rr 2d3r is the moment of inertia~we have prop-
erly taken into account the pressurepb on the box!. The
difference with the usual virial theorem is the occurrence
a damping term1

2 j İ due to friction. In the high-friction limit,
we get

1

2

dI

dt
5

1

j
~2K1W23pbV!. ~17!

This expression can also be directly obtained from the
system.

B. Stationary solutions and maximum entropy states

The stationary solutions of the SP system are given by
Boltzmann distribution~3! in which the gravitational poten
tial appears explicitly. The Boltzmann distribution can al
be obtained by maximizing the entropyS at fixed mass and
energy or by maximizing the free energyJ at fixed mass and
temperature. The gravitational potential is determined s
consistently by solving the mean field equation

DF54pGAe2bF, ~18!

obtained by substituting the density~3! in the Poisson equa
tion ~5!. This Boltzmann-Poisson equation has been stud
in relation to the structure of isothermal stellar cores@23# and
globular clusters@22#. It is well known that the density of an
isothermal gas decreases at large distances asr 22 resulting
in the infinite mass problem if the system is not bounded

The equilibrium phase diagram (E,T) of isothermal con-
figurations confined within a box is represented in Fig
where we have plotted the normalized inverse tempera
03610
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h5bGM/R as a function of the normalized energyL5
2ER/GM2. The curve has a striking spiral behavior para
etrized by the density contrastR5r(0)/r(R) going from 1
~homogeneous system! to 1` ~singular sphere! as we pro-
ceed along the spiral. There is no equilibrium state ab
Lc50.335 orhc52.52. In that case the system is expect
to collapse indefinitely. It is also important to recall that t
statistical ensembles are not interchangeable for syst
with long-range interaction, such as gravity. In the microc
nonical ensemble~MCE!, the series of equilibria become
unstable after the first turning point of energy~MCE! corre-
sponding to a density contrast of 709. At that point, the i
thermal spheres pass from local entropy maxima to sad
points. In the canonical ensemble, the series of equilib
becomes unstable after the first turning point of tempera
CE corresponding to a density contrast of 32.1. At that po
the isothermal spheres pass from maxima of free energ
saddle points. It can be noticed that the region of nega
specific heats between CE and MCE is stable in the mic
canonical ensemble but unstable in the canonical ensem
as expected on general physical grounds@1#. The thermody-
namical stability of isothermal spheres can be deduced f
the topology of theb-E curve by using the method of Kat
@24# who has extended Poincare´’s theory of linear series of
equilibria. The stability problem can also be reduced to
study of an eigenvalue equation associated with the sec
order variations of entropy or free energy as studied by P
manabhan@9# in MCE and Chavanis@10# in CE. The same
stability limits as by Katz are obtained, but this method p
vides, in addition, the form of the density perturbation pr
files that trigger the instability at the critical points. We al
recall that isothermal spheres are at most metastable: the
no global maximum of entropy or free energy for a classic
system of point masses in a gravitational interaction@2#.

C. Linear stability analysis

We now perform a linear stability analysis of the SP sy
tem. Letr, T andF refer to a stationary solution of Eq.~6!
and consider a small perturbationdr, dT, and dF around

FIG. 1. Equilibrium phase diagram for classical isotherm
spheres. The spiral rolls up indefinitely towards the singular isoth
mal spherers51/2pGbr 2.
5-4
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this solution that does not change energy and mass. Sin
stationary solution of the SP system is a critical point
entropy, we must assumeL<Lc for a solution to exist. Writ-
ing dr;elt and expanding Eq.~6! to first order, we find that

ldr5
1

r 2

d

dr F r 2

j S dT
dr

dr
1T

ddr

dr
1dr

dF

dr
1r

ddF

dr D G .
~19!

It is convenient to introduce the notation

dr5
1

4pr 2

dq

dr
. ~20!

Physically, q represents the mass perturbationq(r )
[dM (r )5*0

r 4pr 82dr(r 8)dr8 within the sphere of radiusr.
It satisfies, therefore, the boundary conditionsq(0)5q(R)
50. Substituting Eq.~20! in Eq. ~19! and integrating, we
obtain

lj

r 2
q54pdT

dr

dr
1T

d

dr S 1

r 2

dq

dr D 1
1

r 2

dq

dr

dF

dr
14pr

ddF

dr
,

~21!

where we have usedq(0)50 to eliminate the constant o
integration. Using the condition of hydrostatic equilibriu
Tdr/dr1rdF/dr50 and the Gauss theoremddF/dr
5Gq/r 2, we can rewrite Eq.~21! as

lj

4prTr2
q52

dT

T2

dF

dr
1

1

4pr

d

dr S 1

r 2

dq

dr D
2

1

4pr2

1

r 2

dq

dr

dr

dr
1

Gq

Tr2
, ~22!

or, alternatively,

d

dr S 1

4prr 2

dq

dr D 1
Gq

Tr2
2

lj

4prTr2
q2

dT

T2

dF

dr
50.

~23!

From the energy constraint~9! we find that

dT52
2

3ME
0

R

drF4pr 2dr5
2

3ME
0

R

q
dF

dr
dr. ~24!

Hence, our linear stability analysis leads to the eigenva
equation

d

dr S 1

4prr 2

dq

dr D 1
Gq

Tr2
2

2V

3MT2

dF

dr
5

lj

4prTr2
q,

~25!

where

V5E
0

R

q
dF

dr
dr, ~26!
03610
e a
f
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where we recall thatq(0)5q(R)50. Equation~25! is simi-
lar to the eigenvalue equation associated with the seco
order variations of entropy found by Padmanabhan@9#. In
particular, they coincide for marginal stability (l50). More
generally, it is proven in Appendix C that a stationary so
tion of Eq. ~6! is linearly stable if and only if it is a loca
entropy maximum. The zero eigenvalue equation was sol
by Padmanabhan@9#. It is found that marginal stability oc-
curs at the point of minimum energyL5Lc , in agreement
with the Katz@24# approach, and that the perturbationdr/r
that induces instability~technically the eigenfunction assoc
ated withl50) has a core-halo structure~i.e., two nodes!. It
is also argued qualitatively that the number of oscillations
the profiledr/r increases as we proceed along the series
equilibria, see Fig. 1, up to the singular sphere~i.e., for
higher and higher density contrasts!. Of course, on the uppe
branch of Fig. 1 the eigenvaluesl are all negative~meaning
stability!, while more and more eigenvalues become posit
~meaning instability! as we spiral inward forR.709.

If we fix the temperatureT instead of the energyE, the
eigenvalue equation becomes@takedT50 in Eq. ~23!#

d

dr S 1

4prr 2

dq

dr D 1
Gq

Tr2
5

lj

4prTr2
q. ~27!

This is similar to the equation obtained by Chavanis@10# by
analyzing the second-order variations of free energy. T
case of marginal stability (l50) coincides with the point of
minimum temperatureh5hc as in the Katz@24# analysis. It
is found that the perturbationdr/r that induces instability at
h5hc in the canonical ensemble hasno core-halo structure
~it has only one node!.

III. SELF-SIMILAR SOLUTIONS OF THE
SMOLUCHOWSKI-POISSON SYSTEM

A. Formulation of the general problem

We now describe the collapse regime and look for se
similar solutions of the SP system. Restricting ourselves
spherically symmetric solutions and using the Gauss th
rem, we obtain the integro-differential equation

]r

]t
5

1

r 2

]

]r H r 2

j S T
]r

]r
1

1

r 2
GrE

0

r

r~r 8!4pr 82 dr8D J .

~28!

We look for self-similar solutions in the form

r~r ,t !5r0~ t ! f S r

r 0~ t ! D , r 05S T

Gr0
D 1/2

, ~29!

where the densityr0(t) is of the same order as the centr
densityr(0,t) and the radiusr 0 is of the same order as th
King radiusr K5@9T/4pGr(0)#1/2 which gives a good esti-
mate of the core radius of a stellar system@22#. Substituting
ansatz~29! into Eq. ~28!, we find that
5-5
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dr0

dt
f ~x!2

r0

r 0

dr0

dt
x f8~x!5

Gr0
2

j

1

x2

d

dxH x2S f 8~x!

1
1

x2
f ~x!E

0

x

f ~x8!4px82 dx8D J ,

~30!

where we have setx5r /r 0. The variables of position and
time separate, provided that there existsa such thatr0r 0

a

;1. In that case, Eq.~30! reduces to

dr0

dt S f ~x!1
1

a
x f8~x! D5

Gr0
2

j

1

x2

d

dx H x2S f 8~x!

1
1

x2
f ~x!E

0

x

f ~x8!4px82 dx8D J .

~31!

Assuming that such a scaling exists implies th
(j/Gr0

2)(dr0 /dt) is a constant that we arbitrarily set to b
equal to 1. This leads to

r0~ t !5
j

G
~ tcoll2t !21, ~32!

so that the central density becomes infinite in a finite ti
tcoll while the core shrinks to zero asr 0;(tcoll2t)1/a. Since
the collapse time appears as an integration constant, its
cise value cannot be determined explicitly. The scaling eq
tion now reads

f ~x!1
1

a
x f8~x!5

1

x2

d

dx H x2S f 8~x!

1
1

x2
f ~x!E

0

x

f ~x8!4px82 dx8D J ,

~33!

which determines the invariant profilef (x). Alternative
forms of Eq.~33! are given in Appendix A. If one knows th
value ofa, Eq.~33! leads to a ‘‘shooting problem’’ where th
value of f (0) is uniquely selected by the requirement of
reasonable behavior forf (x) at large distances~see below!.
As f (x)→0 for largex, we can only keep the leading term
in Eq. ~33!, which leads tof (x);x2a whenx→1`.

The velocity profile defined by Eq.~7! can be written as

u~r ,t !52v0~ t !VS r

r 0~ t ! D , ~34!

with

v0~ t !5
T

jr 0
and V~x!5

f 8~x!

f ~x!
1

4p

x2 E0

x

f ~x8!x82 dx8.

~35!
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The invariant profileV(x) has the asymptotic behavior
V(x);x when x→0 andV(x);1/x when x→1`. On the
other hand, the mass profile can be written as

M ~r ,t !5M0~ t !gS r

r 0~ t ! D , ~36!

with

M0~ t !5r0r 0
3 and g~x!54pE

0

x

f ~x8!x82 dx8. ~37!

The invariant profileg(x) has the asymptotic behavio
g(x);x3 whenx→0 andg(x);x32a whenx→1`.

B. Canonical ensemble

In the canonical ensemble in which the temperatureT is a
constant, Eq.~29! leads toa52 ~the particular caseT50 is
treated in Appendix B!. In that case, the scaling equatio
~33! can be solved analytically~see Appendix A! and the
invariant profile is exactly given by

f ~x!5
1

4p

61x2

S 11
x2

2 D 2 . ~38!

This solution satisfiesf (0)53/2p and f (x);1/px2 as x→
1`. From Eq.~32! we find that the central density and th
core radius evolve with time as

r~0,t !5r0~ t ! f ~0!5
3j

2pG
~ tcoll2t !21,

r 0~ t !5S T

j D 1/2

~ tcoll2t !1/2. ~39!

On the other hand, using Eq.~38!, we find that the velocity
profile and the mass profile are given by Eqs.~34! and ~36!
with

v0~ t !5S T

j D 1/2

~ tcoll2t !21/2 and V~x!5
2x

61x2
,

~40!

M0~ t !5S T3

jG2D 1/2

~ tcoll2t !1/2 and g~x!5
4x3

21x2
.

~41!

At t5tcoll , the scaling solutions~29!, ~40!, and ~41! con-
verge to the singular profiles

r~r ,t5tcoll!5
T

pGr2
, u~r ,t5tcoll!52

2T

jr
,

M ~r ,t5tcoll!5
4T

G
r . ~42!
5-6
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It is interesting to note that the density profile~42! has the
samer dependence as that of the singular solution to
static isothermal gas spherer51/2pGbr 2 @22#, the two pro-
files differing just by a factor of 2. Therefore, the relatio
ship between the density and the gravitational potential in
tail of the scaling profile is given by a Boltzmann distrib
tion

r;Ae2(1/2T)F, ~43!

with a temperature 2T instead ofT. A r 22 decay of the
density at large distances was also found by Penston@4# in
his investigation of the self-similar collapse of isotherm
gas spheres described by the Euler equations. This is a
eral characteristic of the collapse in the canonical ensem
(T5const). It should be noticed that the free energy does
diverge attcoll although the system undergoes a compl
collapse. Therefore, att5tcoll , the density profile isnot a
Dirac peak contrary to what might be expected from rigoro
results of statistical mechanics@25#. In fact, there is no con-
tradiction because the Dirac peak is formed during the p
collapse evolution@26#.

We now show that the self-similar solution~29! is not
sufficient to quantitatively describe the full density profi
~especially whenr;R!. In order to understand the problem
let us calculate the mass contained in the scaling profil
t5tcoll . Using Eq.~42!, we have

Mscaling5E
0

R T

pGr2
4pr 2dr5

4R

Gb
. ~44!

The massMscaling is finite but, in general, is not equal to th
total massM imposed by the initial condition. This mean
that there must be a nonscaling contribution to the den
which should contain the remaining mass~possibly negative
when M,Mscaling, i.e., h,4!. That the scaling solution
~29! is not an exact solution of our problem is also visib
from the boundary conditions. Indeed, according to Eq.~12!
we should have

] ln r

]r
52

bGM

R2
for r 5R. ~45!

This relation is clearly not satisfied by Eq.~42! except for the
particular valueh52. These problems originate because
work in a finite container. The scaling solution~29! would be
exact in an infinite domain, but, in that case, the total mas
the system is infinite. In addition, if we remove the box, t
isothermal spheres are always unstable and the intere
bifurcations between equilibrium and collapsing states
lost.

Strictly speaking, we expect that the self-similar soluti
~29! will describe the density behavior in the scaling lim
defined by

t→tcoll or r 0→0 and x5r /r 0 fixed. ~46!
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For the reasons indicated above, it probably does not re
duce the density near the edge of the box, that is, forr;R
@r 0. Therefore, we write another equation for the dens
making the following ansatz:

r~r ,t !5r0~ t ! f S r

r 0~ t ! D1
T

4pG
F~r ,t !, ~47!

whereF(r ,t) is the profile that contains the excess or defi
of mass. Fort5tcoll , we have

r~r ,tcoll!5
T

4pG S 4

r 2
1F~r !D , ~48!

and it would be desirable to find an approximate express
for the functionF(r )5F(r ,tcoll). A differential equation for
F(r ) can be obtained by substituting ansatz~47! in the dy-
namical equation~28! and taking the limitt5tcoll . We need
first to discuss the term]r/]t(r ,tcoll). For t→tcoll , we can
use the expansion of the functionf (x), given by Eq.~38!, to
second order in 1/x2 to get

r~r ,t !5
r0r 0

2

pr 2 S 11
2r 0

2

r 2
1••• D 1

T

4pG
F~r ,t !. ~49!

Then, using Eqs.~29! and ~32!, we obtain to first order in
tcoll2t,

r~r ,t !5r~r ,tcoll!1
T2

4pGj F 8

r 4
2

j

T

]F

]t
~r ,tcoll!G ~ tcoll2t !

1••• ~50!

leading to

]r

]t
~r ,tcoll!5

T2

4pGj F2
8

r 4
1

j

T

]F

]t
~r ,tcoll!G . ~51!

The problem is that we do not know the functio
]F/]t(r ,tcoll). It is possible, however, to derive an exa
integral equation that it must satisfy. Since the exact pro
r(r ,t) conserves mass, we have just beforetcoll,

E
0

R]r

]t
~r ,tcoll

2 !r 2dr50. ~52!

The scaling profilerscaling(r ,t) is an exact solution of Eq
~28!, but it does not conserve mass. Multiplying Eq.~28! by
r 2 and integrating fromr 50 to R, we get

E
0

R]rscaling

]t
~r ,tcoll

2 !r 2dr

5
R2

j S T
]rscaling

]r
~R!1rscaling

GMscaling

R2 D U
t5tcoll

5
2T2

pGjR
, ~53!
5-7
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where we have used Eqs.~42! and ~44! to obtain the last
equality. Now, subtracting Eqs.~52! and~53!, using Eq.~47!
and passing to the limitt→tcoll , we find that

E
0

R]F

]t
~r ,tcoll!r

2dr52
8T

jR
. ~54!

This relation implies, in particular, that we cannot ta
(]F/]t)(r ,tcoll)50 in Eq. ~51!. In fact, it is likely that
F(r ,t) involves combinations of the type

F~r ,t !;r0f ~r /r 0!r 2F~r !,
1

r 2
~r 21cr0

2!F~r !,

F~Ar 21cr0
2!, . . . , ~55!

which reduce toF(r ) in the limit t→tcoll . Considering the
time derivative of these expressions att5tcoll , we find that
they take only one of the two formsF(r )/r 2 and F8(r )/r .
We are therefore led to obtain the following ansatz:

j

T

]F

]t
~r ,tcoll!5a

F~r !

r 2
1b

F8~r !

r
, ~56!

where a and b are some unknown constants that will b
determined by an optimization procedure~see below!. If we
substitute ansatz~47! in Eq. ~28!, take the limitt5tcoll, and
use Eqs.~51! and ~56!, we find after some simplification
that F(r ) satisfies the differential equation

r 2F91~62b!rF 81r 2F21~82a!F1F8E
0

r

F~x!x2dx

2
8

r 3E0

r

F~x!x2dx50. ~57!

Interestingly, the final profile equation~57! is notobtained by
setting]r/]t50 in the dynamical equation as, even in t
stationary looking tail,]r/]t is, in fact, of order 1 due to the
fast collapse dynamics.

Equation~57! leads to another shooting problem, starti
this time fromr 5R. The valueF(R) is selected by imposing
the condition that the total mass isM. This yields

E
0

R

F~r !r 2dr5bGS M2
4R

bGD , ~58!

where 4R/bG5Mscaling is the mass included in the scalin
part. Moreover,F8(R) is fully determined by the boundar
condition~12! at r 5R which implies, together with Eq.~48!,

F8~R!1
bGM

R2
F~R!5

8

R3
2

4bGM

R4
. ~59!

Finally, the exact relation~54! combined with Eq.~56! im-
poses the condition
03610
~a2b!E
0

R

F~r !dr1bRF~R!52
8

R
. ~60!

In order to determine the values ofa andb, we shall require
that the value of the total density atr 5R is maximum, as the
system would certainly tend to expel some mass if it w
not bound to a sphere~recall that the profileF arises because
of boundary effects!. In addition, Eq.~60! implies thatF is
integrable, so that the optimization process should be
formed including this constraint@if F is integrable, then Eq
~60! is automatically satisfied as it is equivalent to the co
servation of mass#. In the section devoted to numerical sim
lations, we studyF numerically and compare it with the nu
merical profiles obtained by solving the SP system.

C. Microcanonical ensemble

If the temperature is not fixed but is instead determined
the energy constraint~9!, then the exponenta is not knowna
priori . However, we have solved Eq.~33! numerically for
different values ofa and found that there is a maximum
value fora above which Eq.~33! does not have any physica
solution. This valueamax52.209 733 04 . . . is close to that
found by Lynden-Bell and Eggleton@7# ~and, to some extent
by Cohn @6# and Larson@5#! in their investigation of the
gravitational collapse of globular clusters. The common f
ture between these models is that the temperature is fre
diverge, so the scaling exponenta cannot be determined
from simple dimensional analysis. However, the agreem
on the value ofa is probably coincidental since our mod
differs from the others in many respects.

In the present case,amax is just an upper bound ona not
a unique eigenvalue determined by the scaling equation
in Ref. @7#, for example. However, this maximum value lea
to the fastest divergence of the entropy and the tempera
so it is expected to be selected by the dynamics~recall that
the SP system is consistent with a maximum entropy prod
tion principle@20#!. Indeed, the temperature and the entro
respectively, diverge as

T~ t !;~ tcoll2t !2(a22)/a, S~ t !;2
3~a22!

2a
ln~ tcoll2t !.

~61!

Note that these divergences are quite weak as the expo
involved is small (amax22)/amax50.094 913 3. . . . For a
5amax, the value off (0) selected by the shooting proble
defined by Eq.~33! is f (0)55.178 . . . . Therefore, the cen-
tral density evolves with time as

r~0,t !5~5.178 . . . !
j

G
~ tcoll2t !21. ~62!

The coefficient in front of (tcoll2t)21 is approximately 10
times larger than fora52 @see Eq.~39!#. The density profile
at t5tcoll is equal to

r~r ,t5tcoll!5
K

r a
, ~63!
5-8
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whereK is a constant that is not determined by the scal
theory. Using Eq.~63! and the Gauss theorem, we find th
the relation betweenr and F in the tail of the self-similar
profile is that of apolytrope,

r;~F2const!a/(a22), ~64!

with index n5a/(a22).10.53 fora5amax.
We now address the divergence of the potential ene

which should match that of the temperature~or kinetic en-
ergy! in order to ensure energy conservation. After integ
tion by parts, the potential energy can be written as

W52
GM2

2R
2

1

8pGE ~“F!2 d3r . ~65!

Then, using the Gauss theorem, we obtain

W52
GM2

2R
2

G

2 E0

R 1

r 2 S E
0

r

r~r 8!4pr 82 dr8D 2

dr.

~66!

If we assume that all the potential energy is in the scal
profile, we get a contradiction, since

Wscaling~ t5tcoll!;2
G

2 E0

R 1

r 2 S E0

r 1

r 8a
4pr 82 dr8D 2

dr

;2E
0

R

r 422adr ~67!

converges fora,5/2. Since the temperature diverges w
time for a5amax, the total energy cannot be conserve
This would suggest thata52 as in the canonical ensembl
We cannot rigorously exclude this possibility, but a value
a close toamax.2.21 is more consistent with the numeric
simulations~see Sec. IV! and leads to a larger increase
entropy~in agreement with the MEPP!. If this value is cor-
rect, the divergence of the gravitational energy should or
nate from the nonscaling part of the profile, which also
commodates for the mass conservation. In the following
possible scenario allowing for the gravitational energy to
verge is presented.

Let us assume that there exist two length scalesr 1 andr 2
satisfyingr 0!r 1!r 2!R with r 0 ,r 1 ,r 2→0 for t→tcoll such
that the mass betweenr 1 andr 2 is of order one. The physica
picture that we have in mind is that this mass will progre
towards the center of the domain and form a dense nuc
with larger and larger potential energy. We assume that
r 1,r ,r 2 the density behaves as

r~r ,t !;
r 1

g2a

r g
, ~68!

so that this functional form matches the scaling profile
r;r 1. If we impose that the total mass betweenr 1 andr 2 is
of order one, we get
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E
r 1

r 2r 1
g2a

r g
r 2dr;1, i.e., r 2;r 1

(a2g)/(32g) , ~69!

which shows thatr 2@r 1 sincea,3. Now, the contribution
to the potential energy of the density betweenr 1 and r 2,
which is assumed to be the dominant part, is

W;2E
r 1

r 2 1

r 2 S Er 1

r r 1
g2a

r 8g
r 82dr8D 2

dr

;2r 1
2(g2a)r 2

522g

;2r 1
2(a2g)/(32g) , ~70!

where we have used Eq.~69! to get the last equivalent. Sinc
the divergence of the potential energy must compensate
of the kinetic term we must have2W; 3

2 MT;r 0
22a , where

we have used Eqs.~29! to get the last equivalent. This rela
tion implies thatr 0 and r 1 are related to each other by

r 1;r 0
(a22)(32g)/(a2g) . ~71!

Now, imposingr 1@r 0 leads tog,2. Therefore, any value o
g,2 leads to the correct divergence ofW within this sce-
nario. Note that Eq.~68! may arise from the next correctio
to the scaling of the form

r~r ,t !5r0f ~r /r 0!1r0
ḡ f 1~r /r 0!1•••, ~72!

with f 1(x);x2g for largex andḡ,1 for the first term to be
dominant in the scaling regime. Matching the largex behav-
ior of Eqs.~68! and ~72!, we obtain

r0
ḡr 0

g;r 1
g2a , ~73!

which is equivalent to

r 1;r 0
(aḡ2g)/(a2g) . ~74!

Sinceḡ,1, this implies thatr 1@r 0, as expected. More pre
cisely, comparing with Eq.~71!, we have

ḡ5
g1~a22!~32g!

a
, ~75!

and we check that the conditiong,2 is equivalent toḡ
,1.

D. Analogy with critical phenomena

In this section, we determine the domain of validity of th
scaling regime by using an analogy with the theory of critic
phenomena. For simplicity, we work in the canonical e
semble but we expect to get similar results in the micro
nonical ensemble. Forh5u215bGM/R close tohc , we
define

e5
uh2hcu

hc
;

uuc2uu
uc

!1. ~76!
5-9
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For h5hc the central densityr(0,t) goes to a finite con-
stantr` when t→1`. Writing dr(t)5r`2r(0,t) and us-
ing Eq. ~6!, which is quadratic inr, we argue that, forh
<hc , dr(t) satisfies an equation of the form

ddr

dt
;

dr

t
2

G

j
dr2, ~77!

wheret plays the role of a correlation time that is expect
to diverge forh5hc leading to a slow~algebraic! conver-
gence ofdr towards zero at the critical temperature. Act
ally, for h5hc , Eq. ~77! yields

dr;t21. ~78!

Now, if we stand slightly above the critical point (h.hc),
we expect this behavior to hold up to a time of ordertcoll for
which the perturbation term proportional to (1/j)(T
2Tc)Dr(0,t);2e is of the same order as]r/]t;21/t2.
This yields

tcoll;e21/2;~h2hc!
21/2. ~79!

By analogy with critical phenomena, it is natural to expe
that t has the same behavior forh,hc ,

t;~hc2h!21/2. ~80!

Therefore, forh,hc and according to Eq.~77!, dr(t) tends
exponentially rapidly to the equilibrium value

r`2r~0,t51`!5
j

G
t21;~hc2h!1/2. ~81!

This relation is consistent with the results obtained in
equilibrium study@10#, where the exact result

12
r~0!

r`
'F 8

hc22 S 12
h

hc
D G1/2

~82!

is derived close to the critical point.
Another interesting question concerns the extent of

scaling regime, which we expect to be valid fortcoll2t
,dt;en. To computen, we integrate the dynamical equa
tion in the regime where the perturbation2eDr dominates,

]r

]t
.2eDr, ~83!

leading to

r~0,t !;E
k,r 0

21
k2exp~k2et !dk;r 0

22exp~r 0
22et !, ~84!

where we have introduced an upper momentum cutoff
orderr 0

21 to prevent the integral from diverging. Indeed, t
Laplacian of r should become positive forr @r 0 as
D(r 22)52r 24.0. Thus, fore!1, we expect that the den
sity will first saturate tor` for a long time of ordertcoll @see
Eq. ~78!#, before rapidly increasing@see Eq.~84!#, and ulti-
mately reaching the scaling regime@see Eq.~29!#. Compar-
03610
t

e

e

f

ing Eq. ~84! with the density in the scaling regimer(0,t)
;r 0

22, we find that the scaling regime is reached at a timet*
such thatr 0

22et* ;1 ~for the argument in the exponential t
be of order one!. Since r 0;(tcoll2t)1/2 in the scaling re-
gime, we gettcoll2t* ;etcoll . Therefore, the width of the
scaling regime,dt5tcoll2t* , behaves as

dt;tcolle;e1/2, ~85!

establishingn51/2. Close to the critical point, the collaps
occurs at a very late time and the width of the scaling regi
is very small. Therefore, if we are close to the critical poi
it will be difficult to reach numerically the regime in whic
the results of Secs. III A to III C are valid.

Regrouping all these results, and using again an ana
with critical phenomena, we expect that the central den
obeys the following equation:

r~0,t !5~ tcoll2t !21G„tcoll~ tcoll2t !…, ~86!

wheretcoll;e21/2 and the scaling functionG satisfies

G~0!5
3

2p
, G~x!;r`Ax, for x→1`. ~87!

IV. NUMERICAL SIMULATIONS

In this section, we perform direct numerical simulatio
of the SP system and compare the results of the simulat
with the theoretical results of Secs. II and III. In most of t
numerical experiments, we start from a homogeneous sp
with radiusR and densityr* 53M /4pR3. This configuration
has a potential energyW0523GM2/5R. In the canonical
ensemble the temperature is equal toT at any time. In the
microcanonical ensemble, the initial temperatureT0 is ad-
justed in order to have the desired value ofL53/5
23RT0 /2GM. By changing the temperature or the energ
we can explore the whole bifurcation diagram in parame
space and check the theoretical predictions of Secs. II
III. In the numerical work, we use dimensionless variables
that M5R5G5j51.

A. Microcanonical ensemble

We first solve the SP system with the constraint~9! ensur-
ing the conservation of energy. We confirm the predictions
the thermodynamical approach in the microcanonical
semble. ForL50.334,Lc , the quantitiesr(0,t), T(t),
r K(t), and S(t) converge to finite values and the syste
settles down to a stable thermodynamical equilibrium st
with a density contrastR.596 less than the critical valu
;709 found by Antonov@2#. At large distances, the densit
decays approximately asr 22 like the singular isotherma
sphere@23#. For L50.359.Lc , the behavior of the system
is completely different:r(0,t) andT(t) diverge to1` and
r K(t) goes to zero in a finite timetcoll . We were able to
follow this ‘‘gravothermal catastrophe’’ up to a density co
trastR;104. The entropyS(t) also diverges to1`, but its
5-10
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evolution is slower~logarithmic!. For L50.3355Lc
1 , the

system first tends to converge towards an equilibrium s
but eventually collapses.

In Fig. 2, we plot the inverse of the central density as
function of time for different values ofL. For short times,
the density is approximately uniform, as it is initially. In th
case, the diffusion term in Eq.~6! is negligible and the sys
tem evolves under the influence of the gravitational te
alone. Using the Poisson equation~5!, the Smoluchowski
equation~6! reduces to

dr

dt
5

4pG

j
r2. ~88!

Solving for r(t), we get

r~0,t !5r* S 11
4pG

j
r* t1••• D ~ t→0!, ~89!

where r* is the initial density. Over longer time scales,
pressure gradient develops and the two terms in the ri
hand side of Eq.~6! must be taken into account. The syste
first reaches a plateau with density;r` ~corresponding to an
approximate balance between pressure and gravity! before

FIG. 3. Evolution of the collapse timetcoll with L. The figure
displays a scaling lawtcoll;(L2Lc)

2d with d.0.4 close to the
theoretical value 1/2.

FIG. 2. Time evolution of the central density for different valu
of L. The central densityr(0,t) becomes infinite in a finite time
tcoll(L) depending on the value of energyL ~labeling the curves!.
The figure shows that the collapse time diverges as we approac
critical valueLc50.3345 for which a local entropy maximum ex
ists.
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gravitational collapse takes place eventually att;tcoll . In
Fig. 2, we see that the collapse timetcoll depends on the
value of L and increases as we approach the critical va
Lc . To be more quantitative, we plot in Fig. 3 the collap
time tcoll as a function of the distance to the critical poi
L2Lc . A scaling law is observed with an expone
;20.4 close to the predicted value21/2 ~see Sec. III D!.

During the late stage of the collapse, the density profi
are self-similar, that is, they differ only in normalization an
scale~Fig. 4!. Indeed, if we rescale the density by the cent
density and the radius by the King radius, the density profi
at various times fall on to the same curve~Fig. 5!. The in-
variant profile is compared with the scaling profilef (x) cor-
responding toa5amax and the agreement is excellent, e
cept in the tail. This small discrepancy can be ascribed to
next correction to scaling~see Sec. III C!, which generates a
power law profile betweenr 1 andr 2 with an indexg,2. We
have checked that the logarithmic slope of the profile ar
5R is equal to2h, in agreement with the boundary cond
tion ~45!. However, this relation only holds in a tiny portio
of the curve~invisible in Fig. 5! so that the ‘‘effective slope’’
is more consistent with a valuea.2.2. In Fig. 6, we plot the

FIG. 4. Evolution of the density profile forL50.359.Lc at
different times. Starting from a uniform distribution att50, the
system develops a core-halo structure with a shrinking core. F
this figure, we may suspect that the evolution is self-similar, i.e.,
density profiles at different times can be superimposed by an ap
priate rescaling.

FIG. 5. This figure represents the~quasi!invariant density profile
obtained forL50.359 by rescaling the density by the central de
sity and the radius by the King radius. It is compared with t
theoretical profile f (x) calculated by solving Eq.~33! with a
5amax.

the
5-11
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inverse central density as a function of time. It is seen th
for t→tcoll , the central density diverges with time as (tcoll
2t)21, in good agreement with the theoretical expectati
The slope of the curve in Fig. 6 is'20.313 but is consis-
tently getting closer to the theoretical value21/5.178 . . .
'20.193 corresponding toa5amax asL increases, or ast
approachestcoll ~the small difference is attributed to nonsca
ing corrections, as discussed in Sec. III C!. Note that a value
of a52 would yield a much larger slope22p/3'22.094
~see Sec. III B!, which is clearly not observed here. Ther
fore, the simulations are consistent with a value ofa
5amax, as expected on physical grounds. This valuea
5amax is also consistent with the slow but existing dive
gence of the temperature. Indeed, the slope of the curv
Fig. 7 is'20.1, in agreement with the theoretical expec
tion.

To study the development of the instability for sho
times, we start from a point on the spiral of Fig. 1 close
Lc but with a density contrastR*709 ~we have takenL
50.3344 andR5779). This isothermal sphere, with densi
profile req(r ), is linearly unstable as it is a saddle point
entropy ~see Sec. II C!. In Fig. 8, we have represented th

FIG. 7. Time evolution of the temperature forL50.359. The
curve displays a scaling regimeT;(tcoll2t)2g. The value ofg
.0.1 is in agreement with the theoretical value~61! for a
5amax.

FIG. 6. Time evolution of the inverse central density forL
50.359. This curve displays a scaling regime 1/r(0,t)5A(tcoll

2t). The slope of the curveA.20.313 is of the same order as th
theoretical value21/5.178520.193 corresponding toa5amax.
The small deviation is attributed to nonscaling corrections.
03610
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density perturbation profile dr(r ,t)/req(r )5@r(r ,t)
2req(r )#/req(r ) that develops for short times. This densi
profile presents a core-halo structure~i.e., it has two nodes!,
in excellent agreement with the stability analysis of Pa
manabhan@9# ~we have computed the exact theoretical p
file to compare quantitatively with the simulation!.

B. Canonical ensemble

We now solve the SP system with a fixed temperatureT.
We confirm the results of the thermodynamic approach in
canonical ensemble. Whenh,hc the system converges t
an equilibrium state while it collapses forh.hc ~isothermal
collapse!. The collapse timetcoll scales withh2hc ~see Fig.
9! with an exponent;20.6 close to the theoretical valu
21/2.

In Fig. 10, we plot the scaled densityr(r ,t)/r(0,t) as a
function of the scaled distancer /r K(t) at different times. The
curves tend to superimpose but the thickness of the line
dicates that we do not have a strict self-similar regime~in
agreement with our theoretical analysis!. Indeed, the invari-
ant profilef (x) computed in Sec. III B matches the numeri
very well in the core but does not adequately describe
halo. The difference is due to the nonscaling partF(r ,t) that
accounts for the mass conservation. In Figs. 11 and 12,
result of the numerical simulation~NS! is compared more

FIG. 8. First mode of instability in the microcanonical e
semble. The clean line is obtained by solving the eigenvalue eq
tion ~25! with l50 and the broken line is obtained from the n
merical simulation of the SP system. The profile of dens
perturbation presents a core-halo structure.

FIG. 9. Evolution of the collapse timetcoll with h. The figure
displays a scaling lawtcoll;(h2hc)

2n with n;0.6 close to the
theoretical value 1/2.
5-12
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precisely with the full theoretical prediction involving th
nonscaling term. The agreement is excellent throughout
whole domain. In the core, the profile is dominated by
scaling part which implies ar 22 behavior at moderately
large distances. As explained previously and in Sec. II
this scaling behavior ceases to be valid near the wall and
contribution of the nonscaling part is clearly visible. Its i
fluence on the density profile remains weak but when
density is multiplied byr 2, this nonscaling profile has a non
negligible contribution to the total mass. In Fig. 13, we s
that the central density diverges with time as (tcoll2t)21.
The slope of the curve is approximately equal to 2, in go
agreement with the theoretical prediction 2p/3.2.1 of Sec.
III B.

In Fig. 14, we study the early development of the ins
bility for h;hc . More specifically, we start the simulation
from a point on the spiral of Fig. 1 withh52.510 andR
542*32.1. This isothermal sphere is linearly unstable in
canonical ensemble as it is a saddle point of free energy~see
Sec. II C!, and the perturbation profile that develops for sh
times is shown in Fig. 14. It is in excellent agreement w

FIG. 10. Self-similar profile forh52.75.hc . This ~quasi!in-
variant profile is compared with the analytical scaling profilef (x)
with a52. Deviation from the pure scaling law is due to nonsc
ing corrections that compensate for the excess of mass contain
the scaling profile.

FIG. 11. We plot the numerical finite-time density profi
for h52.75 ~NS!, at a time for which the central density i
r(0,t)'124.9'28.8r` . This is compared to the exact scalin
profile r0f (r /r 0) ~theory!, with f given by Eq. ~38!,
and r05(2p/3)r(0,t)'261.6 and r 05(hr0)21/2'0.0373
@r(r 0 ,t)/r(0,t)514/27'0.519#. We also plot the asymptotic den
sity profile, ras5(phr 2)21, valid for r 0!r !1. In this region, the
correction to scaling is negligible.
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the first mode of instability calculated by Chavanis@10# in
the canonical ensemble. This profile doesnot present a core-
halo structure, in contrast with the first mode of instability
the microcanonical situation. We have also plotted the p
turbation profile for an isothermal sphere located near
second extremum of temperature (h51.842 . . . ) atwhich a
new mode of instability appears@10#. This second mode o
instability has a core-halo structure~Fig. 15!. Of course, the
perturbation profile that develops is a superposition of
first two modes of instability, but we see that its structure
dominated by the contribution of the second mode.

In order to check the inequivalence of microcanonical a
canonical ensembles in the region of negative specific he
we started the simulation from an isothermal sphere wit
density contrast between 32.1 and 709. In the first exp
ment, the energy is kept fixed using the constraint~9!. In that
case, it is found that the sphere is linearly stable as it i
local entropy maximum. However, if the temperature is fix
instead of the energy, the sphere is now unstable as it
saddle point of free energy. This clearly demonstrates in
framework of our simple dynamical model that the microc

FIG. 13. Time evolution of the inverse central density forh
53.5. This curve displays a scaling regime 1/r(0,t)5B(tcoll2t).
The slopeB.2 is close to the theoretical prediction 2p/3.2.1.

-
in

FIG. 12. We plot the same numerical data~NS! as in Fig. 11, but
in the range 5r 0<r<1. This is compared with the theoretical de
sity profile att5tcoll obtained from Eqs.~48! and~57!. The param-
etersa'5.0 andb'5.1 are determined by maximizingr(1) ~see
text!, although the full profile barely depends ona andb, as soon as
b remains slightly greater thana, andb'4.8;5.4. In this range, the
theoretical profile is in excellent agreement with the numerical o
For instance,r(1)NS'0.058 andr(1)theory'0.057. In order to
stress the quantitative agreement, we also plot the naive larr
asymptotics of the scaling profileras5(phr 2)21, for which
r(1)as'0.116.
5-13
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nonical and canonical ensembles are not interchangeabl
self-gravitating systems. This particular circumstance can
traced back to the nonextensivity of the system due to
long-range nature of the gravitational potential. This intere
ing problem is discussed in the review of Padmanabhan@1#
and illustrated by Chavanis@27# for specific models of self-
gravitating systems with a short-range cutoff~self-gravitating
fermions and hard-sphere models!.

Since the stable isothermal configurations are onlymeta-
stable ~i.e., local maxima of a thermodynamical potentia!,
the value of energy or temperature is not sufficient to co
pletely determine the evolution of the system: depending
the shapeof the density profile, an initial configuration wit
L,Lc or h,hc can either reach a quiescent equilibriu
state or collapse. The actual evolution of the system depe
on whether the initial configuration lies in the ‘‘basin of a
traction’’ of the local entropy maximum or not. Of cours
the complete characterization of this basin of attraction is
extremely complicated task because we would have to
all possible initial configurations. We have limited our stu
in the canonical ensemble to the case of unstable isothe
spheres located after the first turning point of temperatu
These solutions correspond to saddle points of free ene
Therefore, a small perturbation~due here to numerica
round-off error! can destabilize the system and induce a
namical evolution. The question is whether the syst

FIG. 14. First mode of instability in the canonical ensemble. T
smooth line is obtained by solving the eigenvalue equation~27!
with l50 and the broken line is obtained from the numerical sim
lation of the SP system. The density profile does not prese
core-halo structure.

FIG. 15. Second mode of instability in the canonical ensem
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evolves towards the local maximum of free energy or und
goes gravitational collapse. Since we start from a sad
point of free energy, the two evolutions are possible depe
ing on the form of the perturbation. In addition, dependi
on the location of the saddle point on the spiral~its density
contrast!, one of these evolutions may be preferred. The
sults of our study are displayed in Fig. 16. The isotherm
spheres that experienced a complete collapse in our num
cal experiments are marked with symboln while those that
converged towards an equilibrium state are marked w
symbol d. A kind of structure seems to emerge: it appea
that the isothermal spheres undergoing gravitational colla
in the canonical ensemble are concentrated near the ver
tangent. We have found a similar structure in the micro
nonical ensemble with a concentration of points undergo
gravitational collapse concentrated this time near the lo
horizontal tangent. However, as indicated previously, this
parent structure is relevant at best in an average sense,
other initial perturbations of thesamesaddle point may lead
to a different evolution. In any case, these results confi
that the maxima of entropy or free energy are notglobal
maxima since they do not attract all initial conditions. Wh
homogeneous spheres withL,Lc andh,hc always seem
to converge towards equilibrium, centrally concentrated s
tems with the same control parameters can develop a
similar collapse leading to a finite time singularity. In fac
considering Fig. 16 again, we see that the central concen
tion is not the only condition for collapse since there exi
highly concentrated states that also converge towards
smooth equilibrium profile with low density contrast~in that
case, the evolution corresponds to an ‘‘explosion’’!. There-
fore, the basin of attraction of the metastable equilibriu
states seems to have a highly nontrivial structure. The n
linear stability of a linearly stable isothermal sphere~located

e

-
a

.

FIG. 16. Basin of attraction in the canonical ensemble. The i
thermal spheres located after the first turning point of the spiral
unstable in the canonical ensemble. Depending on their positio
the spiral~and the initial perturbation!, they can either relax toward
the local maximum of free energy with same temperature (d) or
undergo a gravitational collapse (n).
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this time before the first turning point of energy or tempe
ture! is also of interest. Since it is not a global entropy ma
mum it can be, in principle, destabilized by a finite amplitu
perturbation. However, this perturbation is expected to
huge so that, in practice, the stability of the isotherm
spheres with low density contrast is extremely robust. T
suggests that these metastable states can be very long
@28–30# and physically relevant in an astrophysical conte

V. CONCLUSION

In this paper, we have discussed the thermodynamics
the collapse of a system of self-gravitating Brownian p
ticles in a high-friction limit. This approximation conside
ably simplifies the problem, since the evolution of the f
distribution functionf (r ,v,t) is simply replaced by the evo
lution of its lowest moments. We showed that t
Smoluchowski-Poisson system presents a rich variety of
haviors and displays interesting phase transitions betw
equilibrium states and collapsing states, depending on
value of energy and temperature. When the two evoluti
are possible, the choice depends on a complicated notio
the basin of attraction. This simple model also illustra
dynamically the inequivalence of statistical ensembles
systems with long-range interactions.

An extension of our study is to consider rotating syste
with the conservation of angular momentum. The SP sys
can be generalized to include rotation@20# and is interesting
to study isothermal configurations that are not spheric
symmetric. When spherical symmetry is broken, it is p
sible that the system will fragment in several clumps and t
these clumps will themselves fragment in substructures. T
may yield a hierarchy of structures fitting one into each ot
in a self-similar way as suggested by theoretical consid
ations@31,10#. It would be of interest to investigate wheth
the SP system can display a process of fragmentation
exhibit a fractal behavior. Numerical simulations are und
way.

There exists a close analogy between the statistical
chanics of self-gravitating systems and two-dimensional v
tices @32–34#. Following the pioneering work of Onsage
@35#, there have been some attempts to describe vortice
maximum entropy structures, with possible applications
oceanic and atmospheric situations~e.g., Jupiter’s great red
spot!. The relaxation of point vortices towards the maximu
entropy state is sometimes described, in a statistical sens
a Smoluchowski-Poisson system that analyzes the evolu
of the vorticity in terms of diffusion and drift. The diffusion
is due to the fluctuations of the velocity field and the drift
due to the inhomogeneity of the vorticity field@36#. The SP
system can be deduced directly from the Liouville equat
by using projection operator technics@37# or from a phenom-
enological maximum entropy production principle@38#. It is
interesting to note that, for point vortices, the Fokker-Plan
equation directly has the form of a Smoluchowski equati
whereas for material particles this is true only in a hig
friction limit. This is because, for point vortices, the pha
space coincides with the configuration space while for ma
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rial particles it involves the positions and the velocities of t
particles.

The Smoluchowski-Poisson system also appears in
description of biological systems such as bacterial popu
tions @39#. The diffusion is due to ordinary Brownian motio
and the drift models a chemically directed moveme
~chemotactic flux! along a concentration gradient~of smell,
infection, food, etc.!. When the attractant concentration
itself proportional to the bacterial density, this results in
coupled system morphologically similar to that studied in t
present paper. The question that naturally emerges is whe
this coupling can lead to an instability for bacterial popu
tions similar to the gravitational collapse of self-gravitatin
systems. This possibility will be considered in a forthcomi
paper in which we consider self-similar solutions of t
Smoluchowski-Poisson equation for different systems
various space dimensions@26#.
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APPENDIX A: ANALYTICAL STUDY OF THE SCALING
EQUATION

In this appendix we study analytically the scaling equ
tion ~33!. To that purpose, we rewrite it in an equivale
albeit more convenient form. Let us introduce the functio

g~x!54pE
0

x

f ~x8!x82 dx8, ~A1!

in terms of which Eq.~33! becomes

f ~x!1
x

a
f 8~x!5

1

x2

d

dx
$x2f 8~x!1 f ~x!g~x!%. ~A2!

Multiplying both sides of Eq.~A2! by x2 and integrating the
resulting expression between 0 andx, we obtain

g~x!54px2
x f~x!2a f 8~x!

32a14pa f ~x!
. ~A3!

From Eqs.~A1! and ~A3!, we can derive a nonlinear recu
sion relation satisfied by the coefficientsan of the series
expansion off (x) in powers ofx2 ~asf is an even function!.
Writing

f ~x!5
1

4p (
n50

1`

~21!nanx2n, ~A4!

we find

an1152
2n1a

2a~n11!~2n13!
an1

1

2~n11! (
p50

n
apan2p

2p13
.

~A5!

This recursion relation leads to the largen behavior ofan ,
5-15
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CHAVANIS, ROSIER, AND SIRE PHYSICAL REVIEW E66, 036105 ~2002!
an;8r S n1
3

2D r n1o~r n!, ~A6!

wherer is an unknown constant related to the inverse rad
of convergence of the series. Fora52, the asymptotics
given by Eq.~A6! with r 51/2 is anexact solution of the
recursion relation~A5!, as can be checked by direct subs
tution. Using the identities

P~x!5
1

11rx2
5 (

n50

1`

~21!nr nx2n,

P8~x!52
2rx

~11rx2!2
5

2

x (
n50

1`

~21!nnrnx2n, ~A7!

the series~A4! can easily be resummed leading to Eq.~38!.

APPENDIX B: THE CASE OF COLD SYSTEMS „TÄ0…

For T50, the core radius is not given by the King radi
~29!, which is zero by definition. We still assume, howev
thatr0r̄ 0

a;1, wherea is unknowna priori. The equation for
the invariant profile is then given by

f ~x!1
x

a
f 8~x!5

1

x2

d

dx
@ f ~x!g~x!#, ~B1!

whereg(x) is defined by Eq.~A1!. Multiplying Eq. ~B1! by
4px2 and integrating from 0 tox, we obtain

g~x!5
4px3f ~x!

32a14pa f ~x!
. ~B2!

Using the relationf (x)5g8(x)/4px2, the foregoing equation
can be rewritten as

~a23!g~x!1xg8~x!5a
1

x2
g8~x!g~x!. ~B3!

Introducing the change of variablesu5x3, we get

3
dg

du
5

~32a!g

u2ag
. ~B4!

A separation of the variables can be effected by the trans
mationg5uh, yielding

12ah

h~3h21!
dh5

a

3

du

u
. ~B5!

This equation is readily integrated leading to the impli
equation

g~x!5lS x3

3
2g~x! D 12a/3

, ~B6!

wherel is an integration constant. Asg(x) is an odd ana-
lytical function, Eq. ~B6! first implies thatg(x);x3/3, so
03610
s

,

r-

t

that f (0)51/4p. Combining with Eq. ~32!, this yields
r(0,t)5j/4pG(tcoll2t)21. Then, insertingg(x)2x3/3;x5

in Eq. ~B6!, we find thatx3;x5(12a/3), leading toa56/5.
Note finally that the scaling profile defined by the implic
equation~B6! can be written in the parametric form

f ~x!5
1

4p

1

11s
, g~x!5

1

3
s3/2, x5s1/2S 11

3

5
sD 1/3

,

~B7!

where the constantl has been incorporated in the expressi
of the core radiusr̄ 0.

In fact, forT50, Eq.~6! can be solved analytically. Sinc
the diffusion term vanishes, this equation describes adeter-
ministic motion where the particles have a velocityu5
2(1/j)“F directly proportional to the gravitational forc
~see Sec. II A!. This deterministic problem can be solve
exactly by adapting the procedure followed by Penston@4# in
his investigation of the collapse of cold self-gravitating ga
eous spheres. Let us consider a particle located atr (0)5a at
time t50. We denote byr̄(a) the average density inside th
sphere of radiusa. The total mass inside radiusa can there-
fore be expressed asMa5(4p/3)r̄(a)a3. At time t, this
mass is now contained in the sphere of radiusr 5r (t), where
r (t) is the position of the particle initially atr 5a. Using the
Gauss theorem, the motion of the particle is described by
first-order differential equation

dr

dt
52

1

j

GMa

r 2
. ~B8!

This equation can be integrated explicitly to give

r 5aS 12
4pG

j
r̄~a!t D 1/3

. ~B9!

Let us first discuss the case where the system is initi
homogeneous with densityr̄(a)5 r̄0. In that case, all the
particles~whatever their initial position! arrive atr 50 at a
time tcoll5j/4pGr̄0 defined as the collapse time forT50.
This expression represents a lower bound~reached forh→
1`) on the value of the collapse timetcoll(h) studied in
Sec. III D. During the evolution, the sphere remains hom
geneous with the radius, density, and free energy evolvin

R~ t !5R~12t/tcoll!
1/3, r~ t !5 r̄0~12t/tcoll!

21,

J~ t !5
3bGM2

5R
~12t/tcoll!

21/3. ~B10!

Note that the free energy diverges att5tcoll , unlike in Sec.
III B. These results can also be obtained directly from Eq.~6!
that reduces, for a uniform density, to

dr

dt
5“S 1

j
r“F D5

1

j
rDF5

4pG

j
r2, ~B11!
5-16



-

,

e

it

ded
a

ria-

first

rm

THERMODYNAMICS OF SELF-GRAVITATING SYSTEMS PHYSICAL REVIEW E66, 036105 ~2002!
where we have used the Poisson equation~5! to get the last
equality.

We now suppose that, initially,r̄(a) has a smooth maxi
mum at the center, so that

r̄~a!5 r̄0S 12
a2

A2D ~B12!

for sufficiently smalla, whereA is a constant. In that case
Eq. ~B9! giving the position at timet of the particle located
at r 5a at t50 becomes

r 5aF12S 12
a2

A2D t

tcoll
G 1/3

. ~B13!

At t5tcoll , the time at which the central density becom
infinite, it reduces tor 5a5/3/A2/3. It is now straightforward
to obtain the full density profile att5tcoll . Since the mass
contained betweena and a1da at t50 arrives betweenr
and r 1dr at time t, we have in full generality

r̄~a!4pa2da5r~r ,t !4pr 2dr, ~B14!

or, for sufficiently smalla,

r~r ,t !5 r̄~a!
a2

r 2

da

dr
. r̄0

a2

r 2

da

dr
. ~B15!

At t5tcoll , we get

r~r ,tcoll!5
3

5
r̄0A6/5r 26/5. ~B16!

We have therefore recovered that, forT50, the density pro-
file decreases algebraically with an exponenta56/5. We
now extend this analysis to a timet5tcoll2t just before the
singularity arises. Considering the limita→0 andt→0, Eq.
~B13! can be expanded to the lowest order as

r 5aS t

tcoll
1

a2

A2D 1/3

. ~B17!

Then, Eq.~B15! leads, after some reductions, to the dens
profile

r~r ,t !5
r̄0

t

tcoll
1

5a2

3A2

. ~B18!

The central density corresponds tor 50, i.e. a50. Accord-
ing to Eq.~B18! it evolves with time as

r~0,t !5
r̄0tcoll

t
5

j

4pG
~ tcoll2t !21. ~B19!

Therefore, if we define
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s

y

s5
5a2tcoll

3A2t
, r̄ 05S 3A2

5 D 1/2S t

tcoll
D 5/6

, ~B20!

we can express the density profile in the parametric form

r~r ,t !

r~0,t !
5

1

11s
,

r

r̄ 0~ t !
5s1/2S 11

3

5
sD 1/3

, ~B21!

which is equivalent to Eq.~B7!. According to Eqs.~B19! and
~B20!, we have the scaling lawsr̄ 0;(tcoll2t)5/6, r(0)r̄ 0

6/5

;1 just before the singularity occurs. SettingF5r/r(0)
and x5r / r̄ 0, we easily check thatF(x)512x21••• for x
→0 and F(x);(3/5)2/5x26/5 for x→1`. This solves the
problem forT50. Now, if the temperatureT is very small,
but nonzero, we expect the present scaling to hold provi
that r̄ 0@r 0(t), wherer 0 is defined in Sec. III. This leads to
crossover core densityr0* above which theT5” 0 scaling of
Sec. III B will prevail. The densityr0* can be estimated by

equating r 05(T/Gr0)1/2 to r̄ 0;r0
25/6. The T5” 0 scaling

then prevails when the density becomes high enough,r0*
;(T/G)23/2.

APPENDIX C: CONNECTION BETWEEN DYNAMICAL
AND THERMODYNAMICAL STABILITY

Let r be a stationary solution of Eq.~6! anddr a small
perturbation around this solution. The first and second va
tions of temperature respecting the energy constraint~9! can
be expressed as

3

2
MdT1E drFd3r50, ~C1!

3

2
Md2T1

1

2E drdF d3r50. ~C2!

The critical pointr is a local entropymaximumprovided that
the second variations of entropy

d2S52
3M

4

~dT!2

T2
1

3M

2

d2T

T
2

1

2E ~dr!2

r
d3r ~C3!

are negative for any variations that conserve mass to
order. Let us now linearize Eq.~6! around equilibrium and
write the time dependence of the perturbation in the fo
dr;elt. We get

ldr5“F1

j
~dT“r1T“dr1dr“F1r“dF!G .

~C4!

Multiplying both sides of Eq.~C4! by dr/r, integrating by
parts, and using the equilibrium conditionT“r1r“F50,
we obtain
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lE ~dr!2

r
d3r52E 1

Trj
~T“dr1dr“F!~dT“r1T“dr

1dr“F1r“dF!d3r . ~C5!

We now remark that the second-order variations of the
of entropy production~11! are given by

d2Ṡ5E 1

rTj
~dT“r1T“dr1dr“F1r“dF!2 d3r .

~C6!

We can therefore rewrite Eq.~C5! in the form

lE ~dr!2

r
d3r52d2Ṡ1E 1

Trj
~dT“r1r“dF!~dT“r

1T“dr1dr“F1r“dF!d3r . ~C7!

Using the equilibrium condition, the last term in Eq.~C7! is
clearly the same as

2E 1

j
~dT“r1T“dr1dr“F1r“dF!

3S dT

T2
“F2

1

T
“dF D d3r . ~C8!

Taking the time derivative of Eq.~9! and using Eq.~6! we
have at each time

Ė5
3

2
MṪ2E 1

j
~T“r1r“F!“Fd3r50. ~C9!

Considering this relation to first and second order, we ge
c

,

03610
te

E 1

j
~dT“r1T“dr1dr“F1r“dF!“F d3r

5
3

2
MdṪ

5
3

2
MldT, ~C10!

E 1

j
~dT“r1T“dr1dr“F1r“dF!“dF d3r

5
3

2
Md2Ṫ53Mld2T, ~C11!

where we have used Eqs.~C1! and ~C2! to obtain the last
equalities. Substituting these relations in Eq.~C7!, we get

lH E ~dr!2

r
d3r1

3M

2

~dT!2

T2
23M

d2T

T J 52d2Ṡ.

~C12!

Comparing with Eq.~C3!, we finally obtain

d2Ṡ52ld2S. ~C13!

Sinced2Ṡ>0, see Eq.~C6!, the sign ofl is the same as tha
of d2S. If r is a local entropy maximum, thend2S and con-
sequentlyl are negative for any perturbation: the solution
linearly stable. Otherwise, we can find a perturbation
which d2S, and consequentlyl, are positive: the solution is
linearly unstable. We can easily extend the relation~C13! to
the canonical ensemble withJ instead ofS. We have found
the same relation for other types of kinetic equations@40#, so
its validity seems to be of a very wide scope.
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